235 research outputs found

    Equilibrium hydrostatic equation and Newtonian limit of the singular f(R) gravity

    Get PDF
    We derive the equilibrium hydrostatic equation of a spherical star for any gravitational Lagrangian density of the form L=−gf(R)L=\sqrt{-g}f(R). The Palatini variational principle for the Helmholtz Lagrangian in the Einstein gauge is used to obtain the field equations in this gauge. The equilibrium hydrostatic equation is obtained and is used to study the Newtonian limit for f(R)=R−a23Rf(R)=R-\frac{a^{2}}{3R}. The same procedure is carried out for the more generally case f(R)=R−1n+2an+1Rnf(R)=R-\frac{1}{n+2}\frac{a^{n+1}}{R^{n}} giving a good Newtonian limit.Comment: Revised version, to appear in Classical and Quantum Gravity

    Towards a Relativistic Description of Exotic Meson Decays

    Full text link
    This work analyses hadronic decays of exotic mesons, with a focus on the lightest one, the JPC=1−+J^{PC}=1^{-+} π1\pi_{1}, in a fully relativistic formalism, and makes comparisons with non-relativistic results. We also discuss Coulomb gauge decays of normal mesons that proceed through their hybrid components. The relativistic spin wave functions of mesons and hybrids are constructed based on unitary representations of the Lorentz group. The radial wave functions are obtained from phenomenological considerations of the mass operator. Fully relativistic results (with Wigner rotations) differ significantly from non-relativistic ones. We also find that the decay channels π1→πb1,πf1,KK1\pi_{1}\to\pi b_{1}, \pi f_{1}, KK_{1} are favored, in agreement with results obtained using other models.Comment: 14 pages, 7 figure

    Dynamics of f(R)-cosmologies containing Einstein static models

    Full text link
    We study the dynamics of homogeneous isotropic FRW cosmologies with positive spatial curvature in f(R)f(R)-gravity, paying special attention to the existence of Einstein static models and only study forms of f(R)=Rnf(R)=R^n for which these static models have been shown to exist. We construct a compact state space and identify past and future attractors of the system and recover a previously discovered future attractor corresponding to an expanding accelerating model. We also discuss the existence of universes which have both a past and future bounce, a phenomenon which is absent in General Relativity.Comment: 14 pages, 6 figure

    Covariant conservation of energy momentum in modified gravities

    Full text link
    An explicit proof of the vanishing of the covariant divergence of the energy-momentum tensor in modified theories of gravity is presented. The gravitational action is written in arbitrary dimensions and allowed to depend nonlinearly on the curvature scalar and its couplings with a scalar field. Also the case of a function of the curvature scalar multiplying a matter Lagrangian is considered. The proof is given both in the metric and in the first-order formalism, i.e. under the Palatini variational principle. It is found that the covariant conservation of energy-momentum is built-in to the field equations. This crucial result, called the generalized Bianchi identity, can also be deduced directly from the covariance of the extended gravitational action. Furthermore, we demonstrate that in all of these cases, the freely falling world lines are determined by the field equations alone and turn out to be the geodesics associated with the metric compatible connection. The independent connection in the Palatini formulation of these generalized theories does not have a similar direct physical interpretation. However, in the conformal Einstein frame a certain bi-metricity emerges into the structure of these theories. In the light of our interpretation of the independent connection as an auxiliary variable we can also reconsider some criticisms of the Palatini formulation originally raised by Buchdahl.Comment: 8 pages. v2: more discussio

    Modified gravity and its reconstruction from the universe expansion history

    Get PDF
    We develop the reconstruction program for the number of modified gravities: scalar-tensor theory, f(R)f(R), F(G)F(G) and string-inspired, scalar-Gauss-Bonnet gravity. The known (classical) universe expansion history is used for the explicit and successful reconstruction of some versions (of special form or with specific potentials) from all above modified gravities. It is demonstrated that cosmological sequence of matter dominance, decceleration-acceleration transition and acceleration era may always emerge as cosmological solutions of such theory. Moreover, the late-time dark energy FRW universe may have the approximate or exact Λ\LambdaCDM form consistent with three years WMAP data. The principal possibility to extend this reconstruction scheme to include the radiation dominated era and inflation is briefly mentioned. Finally, it is indicated how even modified gravity which does not describe the matter-dominated epoch may have such a solution before acceleration era at the price of the introduction of compensating dark energy.Comment: LaTeX file, 24 pages, no figure, prepared for the proceedings of ERE 2006, minor correction
    • …
    corecore